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ABSTRACT

For nanotechnology and nanochemistry research a compound 
piezo drive is applied in nanomechatronics systems. A 
compound piezo drive for nanotechnology and nanochemistry 
is used in scanning microscopy, adaptive optics amd 
interferometry. The model and scheme of a compound piezo 
drive is determined. Its functions and matrix deformations are 
founded. The schemes and parameters of the compound piezo 
drive at the voltage control are determined under various 
boundary conditions its operation in the different application. 
The parameters of the compound longitudinal PZT drive at the 
voltage control are obtained.

Keywords: Compound Piezo Drive, Model, Scheme, Voltage 
Control, Nanotechnology and Nanochemistry Research

INTRODUCTION

A compound piezo drive is applied for nanotechnology 
and nanochemistry research [1-17]. This drive based on the 
piezoelectric effect [18-40]. A compound piezo drive is used 
in scanning microscopy, adaptive optics, interferometry, 
nanostabilization [41-53]. The deformations of a compound 
piezo drive are written by using its model and scheme. The 
model, scheme and functions are obtained by applied the 
method of mathematical physics. The compound piezo drive is 
widely used in practice at the voltage control. Therefore, in the 
article considers the structural schemes of the composite piezo 
drive under various boundary conditions its operation.

MODEL AND SCHEMES

The model and schemes of a compound piezo drive are 
determined using the equation inverse piezo effect. 

The equation inverse piezo effect has the form [6-52]

at the voltage control 
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At current the control 

 

here jT , iS , mE , mD , , , ,  are the strength of 
mechanic field, the relative deformation, the strength of 
electric field, the electric induction, the piezo module, the 
piezo constant, the elastic compliances at  const=E  and at  

const=D , m,j,i  are the indexes.

In general, the equation of inverse piezo effect is written

 

here mmm D,E=Ψ   is control parameter at the control of 
voltage or current.

A compound drive consists from the piezo layers connected 
in series mechanically and parallel electrically [6 − 44]. For 
T-form quadripole of k piezo layer the system of equations is 
determined

 ( ) ( ) ( ) ( )sZsZZsF kkk 1221inp +Ξ+Ξ+−=

( ) ( ) ( ) ( )sZZsZsF kkk 1212out +Ξ++Ξ−=−

1 , 

here 1Z  ,  2Z ,  s ,  δ ,  γ , ( )sFk inp , ( )sFk out , ( )skΞ ,  ( )sk 1+Ξ  are 
the resistances of quadripole, the parameter, the thickness, 
the coefficient propagation wave, the Laplace transform of 
the forces at the input and output ends, the transforms of the 
displacements at input and output ends.

Therefore, the system of the equations for k piezo layer is 
obtained
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This system is founded in the matrix form 
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At the boundary between two layers the equation of forces is 
determined 

( ) ( )sFsF kk inp1out +−=

For a compound drive with   layers and   length its system has 
the matrix form
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The equations of end forces for a compound drive are obtained

at 0=x  ,  ( ) ( ) ( )ssMsFSs,Tj 1
2

1100 Ξ+=

at lx =  ,  ( ) ( ) ( )ssMsFSs,lTj 2
2

220 Ξ−−=

From the general equation of inverse piezo effect, the Laplace 
transform of force causes deformation is determined

 

Then the reverse coefficient for widely used in practice at the 

voltage control with ( ) ( )δ= sEsU m  is determined in the 
form

 

This coefficient is used for the calculations of the compound 
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piezo drive at the voltage control.

In general, the model and scheme of a compound piezo drive 
are founded on Figure 1
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Figure 1. In general scheme compound piezo drive.

Its matrix equation is obtained
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This functions are founded

 

 

 

 

The equation of direct piezo effect is written [6-52]

 

here k  is the index,   is the dielectric constants. Then for 
the compound piezo drive at the voltage control we have its 
direct and reverse coefficients in the form

 

The Laplace transform of the negative feedback voltage on 
Figure 2 at the voltage control is obtained in the form

  

here e , R , nC  are the ends number, the resistance, the 
compound capacity. The sheme with negative feedbacks on 
Figure 2 and parameters of the compound piezo drive at the 
voltage control are determined.

 

Figure 2. Scheme compound drive at voltage control.

For the compound drive at the voltage control with first fixed 
and elastic-inertial load the scheme is obtained on Figure 3
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Figure 3. Scheme compound drive at voltage control with 
first fixed end and elastic-inertial load.

For the compound longitudinal piezo drive at the voltage 
control with first fixed end and the elastic-inertial load for R = 
0  its function is determined in the form

 

 

Its transient response is obtained
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For the compound longitudinal PZT drive at the voltage 

control  U =120 V,   = 4∙10-10 m/V,  n  = 8,   M = 2 kg,    
EC33  = 

5.8∙107 N/m,  eC  = 0.6∙107 N/m its parameters    = 348 nm 

and   tT  = 1.77∙10-4 s are obtained with error 10%.

The schemes and parameters of the compound piezo drive at 
the voltage control are determined.

DISCUSSION

The compound piezo drive at the voltage control is used for 
research in nanotechnology and nanochemistry due to its 
large ranges of movement and force. The model and scheme 
of a compound drive are founded by applied of mathematical 
physics method. By using the equations of quadripoles 
and forces its model, scheme, functions are obtained. For a 

compound piezo drive its system is determined in the matrix 
form. The scheme of the compound piezo drive at the voltage 
control is obtained. 

CONCLUSION

A compound piezo drive for nanotechnology and 
nanochemistry research is applied in scanning microscopy, 
adaptive optics, interferometry, nanostabilization. Its model, 
scheme, functions are determined by applied the method of 
mathematical physics.

The schemes and parameters of the compound piezo drive at 
the voltage control are determined under various boundary 
conditions its operation. The parameters of the compound 
longitudinal PZT drive at the voltage control with first fixed 
end and elastic-inertial load are obtained.
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